- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Shallue, Andrew (2)
-
Webster, Jonathan (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We report that there are 49679870 Carmichael numbers less than$$10^{22}$$ which is an order of magnitude improvement on Richard Pinch’s prior work. We find Carmichael numbers of the form$$n = Pqr$$ using an algorithm bifurcated by the size ofPwith respect to the tabulation boundB. For$$P < 7 \times 10^7$$ , we found 35985331 Carmichael numbers and 1202914 of them were less than$$10^{22}$$ . When$$P > 7 \times 10^7$$ , we found 48476956 Carmichael numbers less than$$10^{22}$$ . We provide a comprehensive overview of both cases of the algorithm. For the large case, we show and implement asymptotically faster ways to tabulate compared to the prior tabulation. We also provide an asymptotic estimate of the cost of this algorithm. It is interesting that Carmichael numbers are worst case inputs to this algorithm. So, providing a more robust asymptotic analysis of the cost of the algorithm would likely require resolution of long-standing open questions regarding the asymptotic density of Carmichael numbers.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Shallue, Andrew; Webster, Jonathan (, Research in Number Theory)
An official website of the United States government
